0 CpxTRS
↳1 DependencyGraphProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxTRS
↳3 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTRS
↳5 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxWeightedTrs
↳7 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedTrs
↳9 CompletionProof (UPPER BOUND(ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳12 CpxTypedWeightedCompleteTrs
↳13 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 6 ms)
↳14 CpxRNTS
↳15 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 148 ms)
↳20 CpxRNTS
↳21 IntTrsBoundProof (UPPER BOUND(ID), 10 ms)
↳22 CpxRNTS
↳23 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 131 ms)
↳26 CpxRNTS
↳27 IntTrsBoundProof (UPPER BOUND(ID), 5 ms)
↳28 CpxRNTS
↳29 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳30 CpxRNTS
↳31 IntTrsBoundProof (UPPER BOUND(ID), 607 ms)
↳32 CpxRNTS
↳33 IntTrsBoundProof (UPPER BOUND(ID), 141 ms)
↳34 CpxRNTS
↳35 FinalProof (⇔, 0 ms)
↳36 BOUNDS(1, n^1)
rev(nil) → nil
rev(rev(x)) → x
rev(++(x, y)) → ++(rev(y), rev(x))
++(nil, y) → y
++(x, nil) → x
++(.(x, y), z) → .(x, ++(y, z))
++(x, ++(y, z)) → ++(++(x, y), z)
make(x) → .(x, nil)
++(x, ++(y, z)) → ++(++(x, y), z)
++(.(x, y), z) → .(x, ++(y, z))
rev(nil) → nil
++(nil, y) → y
++(x, nil) → x
make(x) → .(x, nil)
++(.(x, y), z) → .(x, ++(y, z))
rev(nil) → nil
++(nil, y) → y
++(x, nil) → x
make(x) → .(x, nil)
++(.(x, y), z) → .(x, ++(y, z)) [1]
rev(nil) → nil [1]
++(nil, y) → y [1]
++(x, nil) → x [1]
make(x) → .(x, nil) [1]
++(.(x, y), z) → .(x, ++(y, z)) [1]
rev(nil) → nil [1]
++(nil, y) → y [1]
++(x, nil) → x [1]
make(x) → .(x, nil) [1]
++ :: .:nil → .:nil → .:nil . :: a → .:nil → .:nil rev :: .:nil → .:nil nil :: .:nil make :: a → .:nil |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
++
rev
make
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
nil => 0
const => 0
++(z', z'') -{ 1 }→ x :|: z'' = 0, z' = x, x >= 0
++(z', z'') -{ 1 }→ y :|: z'' = y, y >= 0, z' = 0
++(z', z'') -{ 1 }→ 1 + x + ++(y, z) :|: z'' = z, z >= 0, z' = 1 + x + y, x >= 0, y >= 0
make(z') -{ 1 }→ 1 + x + 0 :|: z' = x, x >= 0
rev(z') -{ 1 }→ 0 :|: z' = 0
++(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
++(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
++(z', z'') -{ 1 }→ 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
make(z') -{ 1 }→ 1 + z' + 0 :|: z' >= 0
rev(z') -{ 1 }→ 0 :|: z' = 0
{ rev } { make } { ++ } |
++(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
++(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
++(z', z'') -{ 1 }→ 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
make(z') -{ 1 }→ 1 + z' + 0 :|: z' >= 0
rev(z') -{ 1 }→ 0 :|: z' = 0
++(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
++(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
++(z', z'') -{ 1 }→ 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
make(z') -{ 1 }→ 1 + z' + 0 :|: z' >= 0
rev(z') -{ 1 }→ 0 :|: z' = 0
rev: runtime: ?, size: O(1) [0] |
++(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
++(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
++(z', z'') -{ 1 }→ 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
make(z') -{ 1 }→ 1 + z' + 0 :|: z' >= 0
rev(z') -{ 1 }→ 0 :|: z' = 0
rev: runtime: O(1) [1], size: O(1) [0] |
++(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
++(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
++(z', z'') -{ 1 }→ 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
make(z') -{ 1 }→ 1 + z' + 0 :|: z' >= 0
rev(z') -{ 1 }→ 0 :|: z' = 0
rev: runtime: O(1) [1], size: O(1) [0] |
++(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
++(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
++(z', z'') -{ 1 }→ 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
make(z') -{ 1 }→ 1 + z' + 0 :|: z' >= 0
rev(z') -{ 1 }→ 0 :|: z' = 0
rev: runtime: O(1) [1], size: O(1) [0] make: runtime: ?, size: O(n1) [1 + z'] |
++(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
++(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
++(z', z'') -{ 1 }→ 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
make(z') -{ 1 }→ 1 + z' + 0 :|: z' >= 0
rev(z') -{ 1 }→ 0 :|: z' = 0
rev: runtime: O(1) [1], size: O(1) [0] make: runtime: O(1) [1], size: O(n1) [1 + z'] |
++(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
++(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
++(z', z'') -{ 1 }→ 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
make(z') -{ 1 }→ 1 + z' + 0 :|: z' >= 0
rev(z') -{ 1 }→ 0 :|: z' = 0
rev: runtime: O(1) [1], size: O(1) [0] make: runtime: O(1) [1], size: O(n1) [1 + z'] |
++(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
++(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
++(z', z'') -{ 1 }→ 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
make(z') -{ 1 }→ 1 + z' + 0 :|: z' >= 0
rev(z') -{ 1 }→ 0 :|: z' = 0
rev: runtime: O(1) [1], size: O(1) [0] make: runtime: O(1) [1], size: O(n1) [1 + z'] ++: runtime: ?, size: O(n1) [z' + z''] |
++(z', z'') -{ 1 }→ z' :|: z'' = 0, z' >= 0
++(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
++(z', z'') -{ 1 }→ 1 + x + ++(y, z'') :|: z'' >= 0, z' = 1 + x + y, x >= 0, y >= 0
make(z') -{ 1 }→ 1 + z' + 0 :|: z' >= 0
rev(z') -{ 1 }→ 0 :|: z' = 0
rev: runtime: O(1) [1], size: O(1) [0] make: runtime: O(1) [1], size: O(n1) [1 + z'] ++: runtime: O(n1) [1 + z'], size: O(n1) [z' + z''] |